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COMMUN. STATIST.-THEORY METH., 1 8 ( 4 ) ,  1527-1547 (1989)  

A TEST OF GOODNESS-OF-FIT BASED ON 
EXlXENE MULTINCMIAL CELL FRE&UENCIES 

Martin T. Wells S. Rao Jamnalamadaka Ram C. Tiwari 
Dept. of Economic Statistics and Applied Dept, of Math. 
and Soc. Statistics Probability Program Univ. of 
Cornell University Univ. of California North Carolina 
Ithaca, NY Santa Barbara, CA Charlotte, NC 

14851-0952 93105 28223 

Peyuords and Phrases: sparse c e 2  1 s ;  crowded c e l  ls; spacings; 
asymptotic normality; eff icaency. 

ABSTRACT 

For the problem of testing goodness-of-fit of a 

specified distribution, a new test based on the number of 

extreme cell frequencies is proposed. A cell is called 

"sparse" ("crowded") if the corresponding cell frequency is 

less than (greater than) or equal to a value u ) O(v _) 0). 

Then, the proposed test statistic, ~C$(u,v), is the number of 

sparse plus croweded, cells, where n denotes the sample and N 

is the number of mutually exclusive and collectively 

exhaustive cells. The exact distribltion of ~C$(u,v) is 

derived under the null hypothesis. The asymptotic 

distribution of s<(u,v) under a sequence of local 

alternatives is also derived. The efficiency of this test 

statistic with respect to several other test statistics is 

obtained. A discussion of the merits and shortcomings of the 

proposed test procedure is also given. 

Copyright O 1989 by Marcel Dekker, Inc. 
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WELLS, JAMMALAMADAKA, AND TIWARI 

Let X I , . .  .,X be a sample of size n from a continuous n 

distribution function F. The goodness-of-fit problem of 

testing whether a specified distribution generated the 

observations can be reduced to testing if the observations 

have a uniform distribution, through the probability integral 

tra?sform. Thus we may (and shall) assume, without any loss 

of generality, that the support of F is [0,1] and that the 

null hypothesis of interest is 

Ho: f(x) = 1, xE[0,1] (1.1) 

where f denotes the probability density function. 

Let PN be a partition of the interval [0,1] into N 

mutually exclusive and collectively exhaustive cells with the 

probability of any sample observation falling into the jth 

cell being equal to pjN. The hypothesis of uniformity in 

(1.1) is equivalent to testing that the p 's are equal to 
jN 

1/N ( 1 ,  . N). Let 0 be the observed frequency of the 
jN 

jth cell, j=1, . . . , N. Then note that 0 2 0 vj and 
j N  

9 0 = n. Choose and fix numbers u and v such that 0 5 u j=1 jN 

Then, the statistics S: (u), Cf; (v), and S$ (u,v) represent 

the nmber of sparse cells, crowded cells, and the number of 

sparse plus crowded cells, respectively. The statistic S;(U) 
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A TEST OF GOODNESS-OF-FIT 1529 

is a generalization of Renyits(1962) statistic ~Ff(0). The 

test criterion is to reject Ho if any of these statistics is 

too large. Under Ho, the exact distributions of the 

statistics S;(U) and $(v) are derived in Section 2 while 

their asymptotic distributions as n/N + rn, 0 < m < m, are 
derived in Section 3 under the sequence of alternatives 

-1/4 A ~ :  f n ( x )  = l + n  I ( x )  , xr[O,ll (1.5) 

-1/4 
converging to the hypothesis (1.1) at the rate n , where 
f ( . ) is a coniiiiu~lously differentiable function on [O, 11 that 

is, f( . ) belongs to c(') [O, 11. Alternatives of this type 

have been considered by many authors (see, e.g., Del 

Pino(1979), Gebert and Kale( 1969), Sethuraman and Hao( 1970), 

Rao and Sethuranan(1975), Jammalamadaka and 

Tiwari(1985,1987), and Jammalamadaka and Wells(1986)). The 

comparison of asymp.2o'iic efficiencies of these tests with 
0 

respect to the usual X'-test statistic given by 

= (Nh) qI1(ojN-n/~) 2 

= (Nh) OiN - n (1.6) 

are msde in Section 4. Note that the statistic '$ depends on 
all cell frequencies where as the statistic s<(u,v) depends 

oniy ori the cell frequencies which are either less than or 

equal to u or greater than or equal to v. Thus, there wiii 

be efficiency loss in using ~Cf;(u,v) against G, and this 
loss could be substantial if there are relatively large 

number of cells with frequencies between u and v exclusively, 

In Section 5, we treat the problem of testin$ goodness-of-fit 

in the presence of nuisance parameters. It is shown that the 

results of Section 3 remain valid even for the ownposite 

hypothesis. 
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1530 WELLS, JAMMALAMADAKA, AND TIWARI 

In this section, we derive the exact distribution of the 

statistics $ ( u ) ,  <(v) and scf;(u,v) under Ho using the 

following Dirichlet integral of type-I given in Sobel and 

Uppuluri (1974): For 0 < p l/b and n 2 br, define 

( 2 . 1 )  
The expressim (2.1) cay be seen to -be exactly equal to the 

probability that b cells each, of a multincinial distribution 

with all cell probabilities equal to p, Mult(b; p,.. . , p ) ,  has 

frequency at least r, when n independent observations are 

drawn from this distribution. 

The following results are slight modifications of Sobel 

and Uppuluri(1974). 

Theorem 2.1. 
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' GOODNESS-OF-FIT 

a where ( ) denote the USUEL~ rnultinomial coefficients. Also, 
b,c 

E{ (s:(u)) N['+~]F(!,~). ( 2 . 7 )  

n Finally, the probability distribution of SCN(u,v) is 

given by the following theorem. 

meorem 2.2. P(SC$(U,V) .. = t) = 
jEj (t-kti ktj-i 

(-1) i=o i ( j-i (t-kti " ,ktj-i 1 

x F(t+i-k,k+j-1). 

Proof. The result follows from (2.1) and Theorem 2.1 by 
t 

observing that ~(S$(u,v)=t)=~-~~(~~(u)=t-k, - C;(V) = k). 

Frankowski(l977) to tabulate the exact values, 

3 .  THE ASMPIOTIC DISIIIIJ3WIONS OF S C : ~  

In this section we establish the asymptotic normality of 

SCf;(u,v) under the sequence of local alternatives An given 

by ( 1 . 5 ) .  These results will be useful in Section 4 where we 

compute the Pitman asymptotic relative efficiencies(&-'sj. 

We will assume that the sample size n and the number of cells 

N tend to infinity in such a way that n/N + m, 0 < m < m. 

For deriving the asymptotic distributions of the 

statistics S;(U), C$(v), and SC;(U,V) under the alternatives 

An in (1.5) we make use of Theorem 2.1 of Holst and Rao(1980, 

p. 25). This theorem gives a general technique for finding 

the distribution of functions of multinomial frequencies. We 

state this result for completeness. 
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1532 WELLS, JAMMALAMADAKA, AND TIWARI 

Let {nvt and [Nu} be sequences of nondecreasing positive 

numbers. Assume that as v -+ ca, 

N u - +  m, n ---I m andm = nu/Nv -+m, 0 < m < m. (3.1) 
V u 

= nu. Under the null hypothesis, we are interested in the 

asymptotic distribution of the random variable 
N 

wv = hk,(ok,) as v + m. ( 3 . 2 )  

where I$;.; k=l,...sNv, u 1 1) ttre real---- ~ d u e d  hrel 

measurable functions satisfying certain regularity conditions 

(see condition (A) on P. 23 of Holst and Rao(1980)). k t  

l v , ,  1 ,  u 2 1 beasequenceof independent random 
Nvv 

variables, where lkV has a Poisson distribution with 

parameter n ,pkv, k=l,...,N , v ) 1. Define v 

rv = q,)' (3 * 4 

For 0 < q < 1, let M = [Nq], the integer part of Nq, and 
define 

"q = $rl 4u'lkv)' (3.5) 

Tnen we have the following. 

Theorem 3.1 (HolstandRao(1980)). Let . l y ,  pv and 1 be as 
vq 

defined by (3.3), (3.4) and (3.5). Assume that there exists 

a % < 1 such that for q 1 qg, %-+ pq, o < p < I, and 
9 
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A TEST OF GOODNESS-OF-FIT 1533 

here A -I A ? ,  $ + Bl and P + 1 as qdl-0. Then as 
q 9 

Consider the partition of [O,1] into N mutually 

exclusive and collectively exhaustive cells with k Q  cell 

i k - 1  k .  Then 

qyy = Probability of the k a  cell 

where ( , , . . , ( are independent random variables with 

f ,  
having a Poisson distribution with parameter N%, 

k=l,.. .,N. Then, from ( 3 . 6 )  we have 

k where ( .) = 0 if k< j . The third relation in (3.10) 
J 

follows by expanding the internand and ignorim the terms 

whi& are smaller than n-1'2. Similarly, We 

(3.11) 

Again, 
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15 34 WELLS, JAMMALAMADAKA, AND TIWARI 

The joint asymptotic normality required in Theorem 3.1 

is es'hblished if we verify that, for any real a, the 

triangular sequence 

satisfies the Liapounov condition (see Chung(1968), p. 200). 

We need to show that 

goes to zero as W r n .  Since N-l ~ar($=~ Ym) has a 

finite nonzero limit, it follows that ~ar(Zff=~ Ym) is 
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A TEST OF GOODNESS-OF-FIT 1535 

O(M). It is easily checked that the numerator in ( 3 . 1 7 )  is 

O(M) so that the ratio in (3.17) goes to zero as W m .  

Similarly, the triangular sequence (aI(tm) V) + tkN; 
k=1, ..., N ,  N > 1 ] ,  for any real a, also satisfies the 

Liapounov condition. Hence we have proved the following 

theorem. 

Theorem 3 . 2 .  Under the alternatives (1.5), the asymptotic 

distributions of S;(U) and $(v) are given by 

respectively, as n,N+m, n/N - m, O< m< m . 
Now, note that SC;(U,V) is the convolution of S;(U) 

and $(v). For this convolution to be asymptotically no-1 

we must verify that, the random vector (n-1/2(~f;(u) - 
$ 8  

,uN(s)), c"~(c;;(~) - pN(c))' = (%]cN)* , say, ie 
$ t '  

asymptotically noml. The joint normality of (SNICN) is 
* X: 

established if we verify that the sequence { a S N e N )  

satisfies the Liapounov condition for any real number a. The 

verification of this is similar to that for the sequence in 

(3.16) and hence is omitted. 

Using the independence of the sequences (~lNl...l~NNll 
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1536 WELLS, JAMMALAMADAKA, AND TIWARI 

and 

B,(SC) = lim 3 (SC) 
q--+I -0 q 

Thus, we have the following main result of this section. 

Theorem 3.3. Under the sequence of alternatives in (1.5), 

~(n-l'~(~$(u,v) - pN(s~))) - N(O, A, (SC) - B?(SC)), a 

as n,N - oo, ancl n/N -4 m, 0 ( m < oo. 

Under the null hypothesis the asymptotic distributions 

of S;(U), <(v) and ~C$(u,v) are given by the following. 

Corollars 3.4. Under the null hypothesis, the random 
-1/2 n x -1/2 n 1: variables n (SN(u) - pN(S) 1, n (CN(v) - pN(S)) and 

* 
n'1'2(~C$(u,v) - pN(SC)) are normally distributed as n.N-+m , 
and n/N --+ m, 0 5 m < m with means zero and variances 

2 2 2 
A1(S)-B1(S), A1(C)-B1(C) and A1(SC) - B1(SG), respectively, 

X -m u X where from (3.10) and (3.11), bN(S) = Ne x j z O m J / j ! ,  pN(C)  
i * 8 S = ~e-?!?- m /i!, and pN(SC) -. pN(S) t pN(C). 1-v 

As an example, we shall analyze a data set from 

P!ld(1967,  p. 329) .  He gave data that represent the range in 

terms of percentage concentrations of calcium carbonate for 

52 sets of 5 samples each, taken from a mixing plant of raw 

inetal. These data were formed into a 50 cell histogram as 

reported in Simonaff(1985). Letting m=l, u=O, and v=4 (see 

Section 4 for the optimal choices of u and v) computation 
5 2 gives SC50(0,4) = 23. This gives a p-value of p = ,06 for 

testing uniformity. If one uses the =-test one can compute 

that T:: = 65.3 which has a pvalue of p = .O8. Therefore, 
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A TEST OF GOODNESS-OF-FIT 1537 

for this data set the test based on extreme cell frequencies 
2 gives results similar to the ,y -test, that is, the hypothesis 

of uniformity d'an not be rejected, 

Simofioff(l985) also analyzed this data set with his 

proposed test statistic M~ and found that 3 rejects the 
hypothesis of uniformity with a pvalue which is less than 

.001. Clearly, M2 is a much more powerful test statistic 

than either dN(u,v) or $. However, the test procedure for 

M' is quite complicated to carry out and the critical values 

m y  be difficult to find in practice. 

The Pitman asymptotic relative efficiency (M) of a 

test relative to another test is defined to be the limit of 

the inverse ratio of sample sizes required to obtain the same 

limiting power at a sequence of alternatives converging to 

the null hypothesis. The limiting power should be a value 

between the limiting test size, cu, and the maximum power, 1. 

If the limiting power of the test at a sequence of 

alternatives is a ,  then its ARF: with respect to any other 

teat with the same tent size and with limiting power greater 

than a ,  is zero. On the other hand, if the limiting pwsr 

of a test at a sequence of alternatives converges to a number 

in the open interval (0,1), then a measure of the rate of 

convergence, called "efficacy", can be computed. Under 

certain standard regularity assumptions (see for example 

Serfling(1980)) which include a condition abut the nature of 

the alternative, as~totic normality of the test statistic 

under the sequence of alternatives, etc., the efficacy i s  

given by 
4 4 eff = pA/u  . 
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1538 W E L L S ,  JAMMALAMADAKA, AND T I W A R I  

HereJ PA and o' are the mean and variance of the limiting 

normal distribution under the sequence of alternatives when 

the test statistic has been normalized to have a limiting 

standard normal distribution under the null hypothesis. In 

such a situation, the AFtE of one test with respect to another 

is simply the ratio of their efficacies. 

From Theorems 3 . 2 ,  3 . 3  and Corollary 3 .4 ,  the efficacies 

of the test statistics S;(U), G(v) and s<(u,v) are 

l(mJ/j! )+q=v(mi/i! )X~~~(mj/j! ) 

(mJ/ j ! ) qzV(mi/i ! ) 

2 2 - (Cy=o mi(i-m)/i! t p- mJ(j-m)/j!) 1 . 
J -V 

A well known special case of ~f ; (u )  is s~(o), RenyiJs(1962) 

empty cell test-statistic. From (4.1) we see that 
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A TEST OF GOODNESS-OF-FIT 1539 

2 The efficacy of the ,y -type test statistic $ as 
defined in ( 1.6) has been obtained by J~unnralamadaka and 

Tiwari(1987). This is given by 

The test statistic % is known to be most efficient among 
the class of tests based on symnetric functions. 

Using (4.1)-(4.4) one can mah--e tables af the efficacies 

of the test statistics S;(U), %(v) and SC;(U,V) for any 

choice of m, u and v. Also, for fixed m, the optimal choice 

of (u,v) can be obtained on a computer. For example, if 

m = 1, one can find that u=O and v=4 is optimal. Note that 

eff(~i(0)) = .121142, and eff(S(0,O) = ,176386, thus using 

the crowded cells adds efficiency. Using (4.4) one can show 

that among the empty cell tests, the efficacy is maximized at 

m = 2.8. Using (4.3) and (4.5) asymptotic relative 

efficiency of ~C$(0,4) with respect to $ for m-1 is given 

by ARE(s$(O,~) ,%) = 70.55%. The efficacies of the tests 

is increasing in m. Though the test statistic SC~;(O,~) is 

computationally simple and appeaiing, note thzt there is 

substantial loss in the efficiency with respect to the most 

efficient symmetric test $. 
The dual of the tests based on frequencies are the tests 

based on disjoint spacings. The duality is that in the tests 

based on frequencies the width of the cell is fixed and the 

number of observations contained in a cell is random and has 

expected value m. In the tests based on m-step disjoint 

spacings, the length of the cell, that is the spacing, is 

random, but the number of observations covered by the 
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1540 WELLS, JAMMALAMADAKA, AND TIWARI 

spacings is fixed at a. For more on this duality see 

Jammalamadaka ad Tiwari(1985, 1987). Jannnalamadaka and 

Wells(1986) considered one-step spacings which are the dual 

of the tests discussed in this paper with m = 1. They have 

shown that the m~st efficient spacings test of this type has 

efficacy equal to .79415. These results agree with the 

conclusions of Jamlamadaka and Tiwari(1985,1987) that tests 

based on spacings seem to be more efficient than tests based 

on cell frequencies. 

All of the test procedures discussed here are unable to 

detect alternatives convergir-s to the? uzlifom at 8 rate 
-1/4 faster than n . There are quite a few goodness-of-fit 

tests, such as the Kolmogorov-Smirnov or Cramer-von Mises 

test that c m  distinguish alternatives converging at a rate 

no faster than n-1/2. Therefore the proposed tests have an 

asymptotic relative efficiency of zero as compared to these 

more powerful tests. Other tests with this lack of 

efficiency include "symmetric" functions of spacings and 

multinomial frequencies; see Holst(1972), Cressie(l979), 

Hall(1986) and the references contained therein for a full 

discussion on this problem. Also, the proposed tests are not 

useful for testing any null hypothesis other than the uniform 

if the data is provided in tabled form a~riori since the 

uniform distribution for this discretized data cannot be 

assumed without loss of generality. 

There may be situations where the goodness-of-fit tests 

which are more efficient may not be applicable, for example, 

when the number of cells is forced on the user(see the 

example at the end of Section 3). In such a situation one may 

use the tests based on the cell frequencies. The critical 

values of most of the goodness-of-fit tests depend on large 

sample theory; however, for the test based on extreme cell 

frequencies one may tabulate the exact critical values even 
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A TEST OF GOODNESS-OF-FIT 

for small sample sizes using the tables of Sobel, 

Uppulari and Frankowski(lY77). 

As will be seen in the next section these test 

procedures adapt easily to the problem of testing 

goodness-of-fit in presence of nuisance parameters. 

Let Y1, ..., Yn be a sample from a continuous 

* 
distribution with d.f. F . In this section we will study the 
goodness-of-fit testing problem for the composite null * 
hypothesis HZ: F (y) G(y; 8, PO) versus the sequence of 

alternatives A:: ~:(y) = G(y; 8, 4,) where 0 r 0 !RP is a 

vector of unknown golrameters which must be estimated from the 

data and Po, In r r lRq4. It will be shown that. H: and A: 

maybetransformedintotheformof (1.1) and (1.5 We 

shall propose a mcdified version of ~dh;(u,v) for the 

composite hypothesis and discuss its asymptotic behavior 

under the sequence of alternatives (A:). 

For some differentiable function ki(x), 
d x = (xl1 .. . ,xd) 6 W , let v h(x) denote the vector of 

Xo 
partial derivatives ( h(x), ..., a , ( Y  \ \ evaluated at % 

Let lo be the closure of a neighborhood of BO, the true 

unknown value of 8, and Po , the value of ,$ specified under 

the null hypothesis H:. Assrwe v G(y; 8,1)  ard v Giy; 0 , 8 )  
$0 80 

exist and are finite all for (4 ,  b )  r 1Yg. Since 6 E 0 is 
a 

unknown it must be estimated f mm the data. Assume that Bn, 
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1542 WELLS, JAMMALAMADAKA, AND TIWARI 

the estimate of do, is 6-consistent that is, nl'* ( { - d o )  

. It will be clear in what follows that this 

assumption is crucial. 

Concerning the nature of the alternatives we shall 

assume that bn = bO + 7n-1'4, for some 7 s R ~ .  This type of 

alternative was considered by Durbin(1973) for the composite 

goodness-of-fit test in the context of tests based on the 

empirical distribution function. This is a somewhat 

restrictive situation. An example of this setup is testing 

hizther a distribution is Gaussian with some mean and a 

specified variance BO against the alternative that the 

-1/4 variance is shifted by a factor of n . 
In the case of a simple hypothesis we were able to 

transform the goodness-of-fit problem to the problem of 

testing uniformity on [0,1] by applying a probability 

integral transformation (p.i .t. ) . In the case of the 

composite hypothesis no such transformation is exactly 

possible because 0 is unknown. However, it will be shown 

that such a p.i. t. is asymptotically possible. If < is a 

6-consistent estimate of BO, than one may define 

"estimated" uniform [O,1] random variables as 
A A -1 X. = G(Yi ; $,, J9). Let lf(x) = G(G (x ;  8 $ 4  ) ;  6 fl I .  
1 - n 0 O'vO' 

Clearly F~ is defined on [O, 11. A Taylor series of F~ about 
under H: yields 

Similarly, under A: this estimated p.i.t. yields 

F~(x)=G(G-~(x; in,pO); OO, bn) and a Taylor series about do 

and lo yields C(X) = x t L(X,B~)G~/~ t (in-@ ) V  G(G-'(x; 
O *o 
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A TEST OF GOODNESS-OF-FIT 1543 

d,B,) ; @o,Bo)+op(n , where L(X; fiO) = r-VB wdl(x; 
0 

dO,B0) ; f i O J ~ )  Since Bn is an 6-consistent estimate ~ ~ ( x )  

r x + 0 and F;(X) = x 
P 

Therefore ~z(k) is a 0 (n -112) 
P 

d (1.5). If ;E;;L(x; BO) = f(x; do) 

t ~ ( x ;  ~ ~ ) n - ~ / ~  + o (n -w), 
P 

perturbation of F,(x) in 

d c , F x = fc(x), and 
d c 

Fn(x) = fz(x), then fC(x) is ~s in (1.1) aside from the 

0 (n-'I2) term and fE(x) is an in (1.5) aside from Op(n 4 2 )  
P 
term. Since the alternatives of concern are only a distance 

-1/4 proportional to n away from the null hypothesis, the 

0 term vanishes as n + m. Note that lim n1I4(f (x)- 
P n -c m 

fC(x)) = 0 and lim ~~l/~(f~(x)-fz(x)) = 0 for all x r [O,11. 
n + m  

To carry out the test of H: versus A; one needs to 

partition the interval [0,1] into N disjoint cells. The 

analysis in the preceding paragraph indicates that these 

cells will be asymptotically equally probable under H: . 
A 

Therefore, the counting statistic, SC;(U, v; dn) (defined in 

similar fashion as SC$(u,v) in (1.4)) , for the composite 

hypothesis will be asymptotically equal to SC$U,V). To 

compute the centering mean, pN(SC; dn), one would follow 

steps similar to those in (3.6) - (3.11). However, one can 

see that the extra 0 (,-'I2) term in the composite hypothesis 
P 

problem would be one of the terms ignored as in (3.10). 
P 

Hence IpN(sc; fin) - pN(SC) I - 0 as n -+ m. Therefore, the 

asymptotic distribution of the test statistic for the 

composite hypothesis is the same as the test statistic for 

the simple hypothesis. 
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1544 WELLS, JAMMALAMADAKA, A N D  TIWARI 

Although it seems unlikely that the two test statistics 

have the same asymptotic behavior there is a simple intuitive 

explanation for this phenomenon. Recall that the type of 

alternatives under consideration are at a distance of 

away from the null hypothesis. Also the estimates used are 

6-consistent estimates, hence at a distance proportional 

to n away from the true value. Therefore, the test 

statistic can not distinguish between the estimate and the 

true value of the nuisance parameter. If the test statistics 

under consideration could discriminate alternatives at a 

distance of n-1/2j hich the test statistics discussed here 

can not, then one would find that the parameter estimation 

truly matters. For instance, the Kolmogorov-Smirnov and 

Cramer-von Mises test statistics can discriminate 

alternatives that are at a distance proportional to n -1/2 

away. For these two cases it is well known that the 

asymptotic distribution theory for the composite hypothesis 

and the simple hypothesis are quite different. 

Similar results have been found for statistics that are 

functions of the sample spacings. If one uses a statistic 

based on "symmetric" functions of spacings, the test 

procedure can only distinguish alternatives at a distance of 

n -1/4 away from the null hypothesis. However, if one uses 

"nonsymetric" functions of spacings, then the test procedure 

can distinguish alternatives at a distance of away from 

the null hypothesis. In Wells(1987) it is shown that the 

asymptotic behavior for the composite and simple hypotheses 

of "symmetric" functions of spacings are the same. However, 

the asymptotic behavior for the "nonsymntetric" functions is 

quite different when testing the composite hypothesis as 

compared to the simple hypothesis. 

In sunnary, to test H: versus A: one has to estimate the 

unknown parameter by a G-consistent estimate and use it in 
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A TEST OF GOODNESS-OF-FIT 1545 

a p.i.t, to transform the data with values in [0,11, and then 

proceed as if one is testing a simple hypothesis. One may, 

therefore, tabulate asymptotic critical values using Theorem 

3.3. Once again, as in the case of the simple null 

hypothesis, the proposed tests will not be as powerful as the 

ones based on the empirical distribution function for testing 

the composite null hypothesis. 

Am- 

The authors wish to thank Professor John E,  Boyer and 

the two referees for heipful s-uggestions on an earlier 

version of this paper. 
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