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ABSTRACT
For the problem of testing goodness-of-fit of a
specified distribution, a new test based on the number of
extreme cell frequencies is proposed. A cell is called
"gparse"” ("crowded") if the corresponding cell frequency is
less than (greater than) or equal to a value u > O{(v 2 0).
Then, the proposed test statistic, Scﬁ(u,v), is the number of

gparse plus croweded, cells, where n denotes the sample and N
is the number of mutually exclusive and collectively

exhaustive cells. The exact distribution of ch(u,v) is

derived under the null hypothesis, The asymptotic
distribution of ch(u,v) under a sequence of local

alternatives is also derived. The efficiency of this test
gtatistic with respect to several other test statistics is
obtained. A discussion of the merits and shortcomings of the

proposed test procedure is also given.

1527
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1. INTRODUCTION

Let Xl,...,Xn be a sample of size n from a continuocus

distribution function F. The goodnegs-of-fit problem of
testing whether a specified distribution generated the
observations can be reduced to testing if the observations
have a uniform distribution, through the probability integral
transform. Thus we may (and shall) assume, without any loss
of generality, that the support of F ig [Q,1] and that the
null hypothesis of interest is

Hyt f(x) = 1, x€[0,1] (1.1)

where f denotes the probability density function.
Let PN be a partition of the interval [0,1] into N

mutually exclusive and collectively exhaustive cells with the
probability of any sample observation falling into the jth
cell being equal to ij. The hypothesis of uniformity in

(1.1) is equivalent to testing that the ij’s are equal to

1I/8 (j=1, ..., N). Let OjN be the observed frequency of the
Jjth cell, j=1, ..., N. Then note that OJN 2 0 Vj and
=1 OjN = n. Choose and fix numbers u and v such that 0 < u
< v { N, and define
sy (w =L T o ¢w, (1.2)
Cg (v) = E§=1 I (OjN v, (1.3)
and
SCS (u,v) = E§=1 I <OJN < uor OjN >v)
= S; (u) + Cg (v), (1.4)

Then, the statistics Sz {u), Cg (v), and SCS (u,v) represent

the number of sparse cells, crowded cells, and the number of
sparse plus crowded cells, respectively. The statistic Sg(u)
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is a generalization of Renyi's(1962) statistic SS(O). The
test criterion is to reject HO if any of these statistics is
too large. Under HO, the exact distributions of the
statistics Sg(u) and CS(V) are derived in Section 2 while

their asymptotic distributions as n/N-m, 0 < m < m, are
derived in Section 3 under the sequence of alternatives
A: £ o(x) =1 +n Y4, xe(0,1) (1.5)

n n
converging to the hypothesis (1.1) at the rate n—1/4, where

[(<) 1is a continuously differentiable function on [0,1] that

is, £(-) belongs to C'17(0,1]. Alternatives of this type

have been considered by many authors (see, e.g., Del
Pino(1979), Gebert and Kale(1969), Sethuraman and Rao(1970),
Rao and Setauraman{1975), Jammalamadaka and
Tiwari(1985,1987), and Jammslamadaka and Wells{1986)). The

comparison of asympiotic efficiencies of these tests with

respect to the usual x2~test statistic given by

_ 2
Th = (/n) B, (0,-n/N)

) 2

= (N/n) 2§=1 0% - (1.6)

are made in Section 4. Note that the statistic Tg depends on
all cell frequencies where as the statistic ch(u,v) depends

only on the cell frequencies which are either less than or
equal to u or greater than or equal to v. Thus, there will

be efficiency loss in using ch(u,v) against TE, and thig

loss could be substantial if there are relatively large
nmmber of cells with frequencies between u and v exclusively.
In Section 5, we treat the problem of testing goodness-of-fit
in the presence of nuisance parameters, It is shown that the
results of Section 3 remain valid even for the cemposite

hypothesis.
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EXACT DISTRIBUTIONS OF sﬁ(u). Cg(v) AND S (u,v)

In this section, we derive the exact distribution of the

statistics Sg(u), Cﬁ(v) and SCE(u,v) under HO using the

following Dirichlet integral of type-I given in Sobel and
Uppuluri (1974): For 0 { p £ 1/b and n ? br, define

b [n+1) J J n-br b r-1
I (r,n)= (1- £F x.) IT, dx .
P TP(r) Din-bre1) =1 i=1 %

(2.1)

The expregsion (2.1) can be seen to be exactly equal to the
probability that b cells each, of a multinomial distribution
with all cell probabilities equal to p, Mult(b; p,...,p), has
frequency at least r, when n independent observations are
drawn from this distribution.

The following results are slight modifications of Sobhel
and Uppuluri(1974).

Theorem 2.1.

n _ _ /N J 8\ N-s+j .
P(Sy(w) = s) = <S)E§_0 (LT w5 (2.2)
(s (™) - [m]Em DIy, (Wt m) 5 (2.3)
P(Gvize) = (DTS (-DI MO 10 vy s (@)

B ™) - N[m] 13 (Vin) (2.5)

where E(X™!) is the factorial moment and N[™ =N(N-1) ...
(N“m"“l ) . I.let

N J.s
Qs,1) = 350 (-1 1 p(urt,i)

1/N
F(S)C) = En_o J(n’S/N) Q(S!J) Il/N(l - I%)(v’n—-j)

where b, tn,s/N) = (?)(g)l (1 - E)n"l. Then
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P(Sg(u) = s,CnN(v) = ¢) =
N-s-c,_,\JyJ ,s+i, c+j-i n o
Fizo (T o0 U5 Y aas ougog FlsH0HI-1) (2.6)

where (bac) denote the usual multinomial coefficients. Also,
b

E{(Sg(u))[l] ~ (c§<v))[m]} = nmlpcmy. 2
Finally, the probability distribution of ch(u,v) is

given by the following theorem.
Theorem 2.2. P(SCh(u,v) = t) =

t ~t-c-k, 4w t-ktiy ktj-i n
D=0 2l;:o DB 00T O35 ) e ke goi)
x F(t+i-k,k+j-1).
Proof. The result follows from (2.1) and Theorem 2.1 by

observing that P(ch(u,v):t)=E§:OP(S§(U)=t~k, CS(V) = k). -

One could use the tables in Sobel, Uppuluri, and
Frankowski{1977) to tabulate the exact values.

3. THE ASYMPTOTIC DISTRIBUTIONS OF SC;(U.V)

In this section we establish the asymptotic normality of

ch(u,v) under the sequence of local alternatives An given

by {1.5). These results will be useful in Section 4 where we
compute the Pitman asymptotic relative efficiencies(ARE’s).
We will assume that the sample size n and the number of cells
N tend to infinity in such a way that n/N -+ m, 0 < m < m.

For deriving the asymptotic distributions of the

statistics Sg(u), Cg(v), and ch(u,v) under the alternatives
An in (1.5) we make use of Theorem 2.1 of Holst and Reo(1980,

p. 25). This theorem gives a general technique for finding
the distribution of functions of multinomial frequencies. We

gtate this result for completeness.
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Let {nV} and {Ny} be sequences of nondecreasing positive

numbers. Assume that as v -+ m,

Nu — @, n, —w and,my = nV/Nu ~tm, 0 {m < o (3.1)
N
. 14
Let (olu’...,oN””) be Mult (n,; ply,...,pNyy), where Ej:l oju

=n,. Under the null hypothesis, we are interested in the
asymptotic distribution of the random variable
N
- v
W, = Ek:l hkv(okv) as ¥ — o, (3.2)

where {hk"; k:l,...gNy, v 2 1} sare real-valued Borel
¥

e

measurable functions satisfying certain regularity conditions
(see condition (A) on P. 23 of Holst and Rao{(1980)). Let
{{IV ""EN V}, ¥ 2> 1 Dbe a sequence of independent random
1
v

variables, where fku has a Poisson distribution with

parameter np k:l,...,Ny, v > 1. Define
N
_n v
)u - 2k::l hkv(fku)’ (3.3)
ky = E(Jy)- (3.4)

For 0 < gq < 1, let M = [Nql, the integer part of Ng, and
define

T Tke1 Py (i) (3.5)

Then we have the following.
Theorem 3.1 (Holst and Rao(1980)). Let Ay, r, and Avq be as

defined by (3.3), (3.4) and (3.5). Assume that there exists
a q, < 1 such that for q 2 Qg Eﬂ=1 P pq, 0 < pq <1, and

1/2
(*Vq - Elyq)/N 0 Aq Bq
£l M ——t N
1/2 0o ]! !
) ({ky - np_)/n Bq Pq

k=1
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where Aq -+ A, B - B and Pq -1 as q+1~0. Then as
1
v, £((W - g )/n )-—-*N(O A—B).

Consider the partition of {0,1] into N mutually
exclugive and collectively exhaustive cells with kth cell

being [(k~1}/N, k/N). Then
Py = Probability of the kth cell

/N -1/4
= J fn(x)dx ~ [1+n L{k/N)Y1/N (3.6}
(k~1)/N
under the alternatives (1.5). Define
Iy(8) = BTl w s (3.7)
(0 = BT 2 V) 5 (3.8)
JN(SC) = }N(S) + JN(C) y {3.9)

where (£1N,..., {NN) are independent random variables with

£kN having a Poisson distribution with parameter NpkN’
k=1,...,N. Then, from (3. 6) we have
g

Ay(S) = ) = 5T J"Q npkN) /3t

:Nz‘;_o mJe"“J o) mM Y (et mhd ae

- 0
w mom, g 2 Y2 12
* NI, e {(1+[() - jm+tm /2)[ (L7(t)/m™ ")at,
J=0 Jj! 2 Jo
(3.10)

where (‘J‘.) =0 if k<j . The third relation in (3.10)
follows by expanding the integrand and ignoring the terms
which are smaller than n—1/2. Similarly, we have

J . 1
- 2 1
p(C)EA(C)N B Eoe P(1+0(])-j4m /Z]JO(lz(t)/n /2ya¢

(3.11)
Again,
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. -1
A = lim N ©~ Var(d _, I({,..S u))
q N 2?;(1-1 kN

= lim NT' B P(6, CwIP(f, 2 utl)

N—m
u e N N i
= lim (aN/N) B5_4 =5 (n/N)JXm_u+1 E——(n/N)
N—-m )
- W J i,.
= E —om /3! Ea.ln:uﬂ m /it
and hence
s _ _=2m yu i+j,., .
Aj(S) = lim A (S)= e T I3 o BP L w U AL (3.12)
aq—1-0
Similarly,
B(S)= Lim N 'Cov(B T(Edw) » By §)
Ne—ian
- -m yu Jya .
=qe 2 om(J m)/Jj!
and
B,(8) = lim B_(8) = e 2}_ m'(j-m)/5!. (3.13)
Also,
A(0) = lim A (C) =TI nitsig (3a4)
qQ i=0 “j=v
aq—1-0
and
B,(C) = lim B_(C) = e™ 3 md(j-m)/§!t . (3.15)
q J=V
q—1-0
The joint asymptotic normality required in Theorem 3.1
is established if we verify that, for any real a, the

triangular sequence

{YkN = aI(ka <u) + ka; k=1,...,N, N21} (3.16)
satisfies the Liapounov condition (see Chung(1968), p. 200).

We need to show that
3/2
S EfYl® /7 var® v (3.17)

goes to zero as M., Since N~ V&r(EM_l kN ) has a

finite nonzero limit, it follows that Var(X&_1 YkN) is
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o{M). It is easily checked that the numerator in (3.17) is
O(M) so that the ratio in (3.17) goes to zero as M—ix.
Similarly, the triangular sequence (aI(kaz v) + ka;

k=1,...,N, N21}, for any real a, also satisfies the

Liapounov condition. Hence we have proved the following

theorem.
Theorem 3.2. Under the alternatives (1.5), the asymptotic
distributions of Sg(u) and Cg(v) are given by
-1/2, n 2
£(n (SN(U)—#N(S)) — N(O, Al(S) - BI(S))
and

2™ HCHW) - myl€)) — N(O,4,(€) - Bjio)),

respectively, as n,N—w, n/N — m, 0<( m< o .

Now, note that ch(u,v) is the convolution of SN

and CE(V). For this convolution to be asymptotically normal

we must verify that, the random vector (n'l/z(sg(u) -
(), T VHEE) - oplon) = 50T 4 sey, s

asymptotically normal. The joint normality of (S;,Cg) is
. X
established if we verify that the sequence {aSN+C;}
satisfies the Liapounov condition for any real number a. The
verification of this is similar to that for the sequence in

(3.18) and hence is omitted.

Using the independence of the sequences {EIN”"’fNN}’

N>1 of Poisson random variables, we have
#y(SC) = E(J(SC))
= E(JN(S) + JN(C))
= ﬂN(S) + ﬂN(C) ' {3.18)

AI(SC) = lim A _(SC)
q—1-0 a
= lim N~
N—x

1 Var(A(SC))
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= A(S) + A(C) - 2e”%m 23:0 ml/ 30, m/il (3.19)
and
B,(SC) = lim B (SC)

1 10 @
-1
= 1im N 7 Cov(A (SC),% _, &...)
e 50,3,
= B,(S) + B,(C) . (3,20)

Thus, we have the following main result of this section.
Theorem 3.3. Under the sequence of alternatives in (1.5),
e(n”/2(sCR(u,v) - 4 (50))) —— N(0, a,(sc) - BE(sC)),

as NN —+ @, and n/N — m, 0 { m ¢ .
Under the null hypothesis the asymptotic distributions
of Sﬁ(u), Cﬁ(v) and ch(u,v) are given by the following.

Corgllary 3.4. Under the null hypothesis, the random

variables n‘l/z(sg(u) - 1yS)), n‘l/z(c§<v) - 4(8)) end

n_l/z(scg(u,v) - p;(SC)) are normally distributed as n,N—w |,

and n/N —m, 0 { m < o with means zero and variances
Ay (3)-B5(s), 4,(0)-B4(C) and A, (SC) - B2(SC), respectively,

vhere from (3.10) and (3.11), p(S) = Ne ™ 20 /ity pC)

- i, X ¥ X
= NeL{_, m'/it, and p(SC) = py(S) + py(C).

As an example, we shall analyze a data set from
Hald({1987, p. 329). He gave data that represent the range in
terms of percentage concentrations of calecium carbonate for
52 sets of 5 samples each, taken from a mixing plant of raw
metal. These data were formed into a 50 cell histogram as
reported in Simonoff(1985). Letting m=1, u=0, and v=4 (see
Section 4 for the optimal choices of u and v) computation
gives 8023(0,4) = 23, This gives a p-value of p = .06 for

tegting uniformity. If one uses the Xz—test one can compute

that ng = 65.3 which has a p-value of p = .08. Therefore,
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for this data set the test based on extreme cell frequencies
gives results similar to the Xzﬁtest, that is, the hypothesis
of uniformity can not be rejected.

Simonoff(1985) also analyzed this data set with his
proposed test statistic Mz and found that Mz rejects the
hypothesis of uniformity with a p~value which is less than
.001. Clearly, M2 is a much more powerful test statistic
than either ch(u,v) or Tﬁ. However, the test procedure for

Mz is quite complicated to carry out and the critical values

may be difficult to find in practice.

4. PITMAN ASYMPTOTIC RELATIVE EFFICTENCY OF

§§§u}, Cﬁ(v) AND Scﬁgu,vl

The Pitman asymptotic relative efficiency (ARE) of a
test relative to another test is defined to be the limit of
the inverse ratio of sample sizes required to obtain the same
limiting power at a sequence of alternatives converging to
the null hypothesis. The limiting power should be a value
between the limiting test size, &, and the maximum power, 1.
If the limiting power of the test at a sequence of
alternatives is a, then its ARE with respect to any other
test with the same test size and with limiting power greater
than a, is zero. On the other hand, if the limiting power
of a test at a sequence of alternatives converges to a number
in the open interval (#,1), then a measure of the rate of
convergence, called '"efficacy", can be computed, Under
certain standard regularity assumptions (see for example
Serfling(1980)) which include a condition about the nature of
the alternative, asymptotic normality of the test statistic
under the sequence of alternatives, etc., the efficacy is
given by

eff = pg/n4 .
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Here, EA and 02 are the mean and variance of the limiting

normal distribution under the sequence of alternatives when
the test statistic has been normalized to have a limiting
standard normal distribution under the null hypothesis. In
such a situation, the ARE of one test with respect to another
is simply the ratio of their efficacies.

From Theorems 3.2, 3.3 and Corollary 3.4, the efficacies
of the test statistics Sg(u), Cﬁ(v) and SCE(u,v) are

U e dy e 2 lo 4
(5o m’/3 ) 1(5)~jm-(m"/2)] J 14(t)dt)
eff (83(u))= ’ 0
()=

b

(B omi/AnT_ /50890 wd (om /5512

J=u+l
(a.1)
j ' 2,,,.0"2 4
(=5, /50 1w /21| Froan)
off (CP(v))=—rr 0
Y B0 wd Gemy s

(4.2)

and

eff(SCy(u,v)) = A/B , (4.3)
where

2

u . .
A=(IZ, (/i) [(5)-jmem®/2]
1=V 2

j j 2,1, 2 4
5 /50 1) -mea®r201 | Firian)
B 0
B=[E§=O<mi/i:)E?=u+1(mj/Jz)+E§=v(mi/iz>2§;é<m5/js)
- 2 35 _om’/51) BT m'/it)

iz0 ®

A well known special case of sg(u) is SE(O), Renyi’s(1962)

- (¥ i(i—m)/i! + E,l;}:v mJ(J'm)/J!)Z]Z .

empty cell test-statistic. From (4.1) we see that
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1
ef£(SR(0)) = m8 J Lian?s @ 1 - mf)%/16.  (4.4)

0
The efficacy of the Xz—type test statistic T; as

defined in (1.6) has been obtained by Jammalamadaka and
Tiwari(1987). This is given by

2 (12 4
eff(Tg) =m (J (“(t)de) /4 . (4.5)
0
The test statistic Tg is known to be most efficient among
the class of tests based on symmetric functions.
Using (4.1)~(4.4) one can make tables of the efficacies

of the test statistics Sg(u), Cﬁ(v) and ch

choice of m, u and v. Also, for fixed m, the optimal choice

{u,v) for any

of (u,v) can be obtained on a computer. For example, if
m=1, one can find that u=0 and v=4 is optimal. Note that
eff(sg(O)) = 121142, and,eff(scg(o,4)) = .176386, thus using

the crowded celle adds efficiency. Using (4.4) one can show
that among the empty cell tests, the efficacy is maximized at
m = 2.8, Using (4.3) and (4.5) asymptotic relative
efficiency of 803(0,4) with respect to Tg for m=1 is given

by ARE<sc§(o,4),T§) = 70.55%. The efficacies of the tests
is increasing in m. Though the test statistic 803(0,4) is

computationally simple and appealing, note that there is
substantial loss in the efficiency with respect to the most

efficient symmetric test Tg.

The dual of the tests bessed on frequencies are the tests
based on disjoint spacings. The duality is that in the tests
based on frequencies the width of the cell is fixed and the
number of observations contained in a cell is random and has
expected value m. In the tests based on m-step disjoint
spacings, the length of the cell, that is the spacing, is

random, but the number of observations covered by the
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spacings ig fixed at m. For more on this duality see
Jammalamadaka and Tiwari(1985, 1887). Jammalamadaka and
Wells(1986) considered one-step spacings which are the dual
of the tests discussed in this paper with m = 1. They have
shown that the most efficient spacings test of this type has
efficacy equal to .79415. These results agree with the
conclusions of Jammalamadaka and Tiwari(1985,1987) that tests
based on spacings seem to be more efficient than tests based
on cell frequencies.

All of the test procedures discussed here are unsble to
detect alternatives converging +to the uniform at a rate

faster than n /%,

There are quite a few goodness-of-fit
tests, such as the Kolmogorov-Smirnov or Cramer-von Mises
test that cen distinguish alternatives converging at a rate
no faster than n—1/2_ Therefore the proposed tests have an
asymptotic relative efficiency of zero as compared to these
more powerful tests, Other tests with thig lack of
efficiency include '"symmetric" functions of spacings and
multinomial frequencies; see Holst(1972), Cressie(1979),
Hall(1986) and the references contained therein for a full
discussion on this problem. Also, the proposed tests are not
useful for testing any null hypothesis other than the uniform
if the data is provided in tabled form apriori since the
uniform distribution for this discretized dats cannot be
assumed without loss of generality.

There may be situations where the goodness-of-fit tests
which are more efficient may not be applicable, for example,
when the number of cells is forced on the user(see the
example at the end of Section 3). In such a situation one may
use the tests based on the cell frequencies. The critical
values of most of the goodness-of-fit tests depend on large
sample theory; however, for the test based on extreme cell

frequencies one may tabulate the exact critical wvalues even
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for small sample sizes using the tables of Sobel,
Uppulari and Frankowski(1977).

As  will be seen in the next section these test
procedures adapt eagily to the problem of testing

goodnesg~of-fit in presence of nuisance parameters.

5. COMPOSITE HYPOTHESIS

Let Y Yn be a sample from a continuous

1! ey

distribution with d.f. F*. In this section we will study the

goodness-of-fit testing problem for the compcsite null
%

hypothesis Hg: F (y) @G(y; 4, ﬂo) versus the sequence of

alternatives Aﬁ: F;(y) = G(y; 4, ﬂn) where ¢ ¢ 8 C R’ is a

vector of unknown parameters which must be estimated from the
data and fy, 4 el ¢ R% It will be shown that Hg end Afl

may be transformed into the form of (1.1) and (1.5). We
shall propose a modified version of Scﬁ(u,v) for the

composite hypothesis and discuss its asymptotic behavior

under the sequence of alternatives {Ag}.

For some differentiable function hix),
X = (Xl’”"xd) € Rd, let Vx h{x) denote the vector of
0
8 9
partial derivatives (w=— h(x), ..., h{x)) evaluated at
2 P
€ Rd.

%0
Let ﬁb be the closure of a neighborhood of 60, the true
unknown value of #, and ﬂo , the value of § specified under

the null hypothesis Hg. Assune Vﬂ Gly; ¢,§) and Vﬁ Gly; 6,8)
0 0

exist and are finite all for (8, ) € 4. Since # ¢ B is

unknown it must be estimated from the data. Assume that Bn’
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-

the estimate of 80, is y n -consistent that is, n1/2 (8 -6.)

n
= Op(n—l/z). It will be clear in what follows that this

agsumption is crucial.
Concerning the nature of the alternatives we shall

-1/4

agsume that ﬂn = ﬁo + 1 , for some 7 ¢ RY. This type of

alternative was considered by Durbin{1973) for the composite
goodness-of-fit test in the context of tests based on the
empirical distribution function. This is a  somewhat
restrictive situation. An example of this setup is testing
whether a distribution is Gaussian with some mean and a
specified variance ﬂO against the alternative that the

variance is shifted by a factor of n'1/4.

In the case of a simple hypothesis we were able to
transform the goodness-of-fit problem to the problem of
testing uniformity on {0,1) by applying a probability
integral transformation (p.i.t.). In the case of the
composite hypothesis no such transformation is exactly
possible because ¢ is unknown. However, it will be shown
that such a p.i.t. is asymptotically possible. If En is a

vy n -consistent estimate of 00, than one may define

"estimated" uniform [0,1] random variables as

. Cixy = ol Yix: B .
X:I = G(Y.i) yn) 50)' Let F (X) - G(G (Xi 'ni,ﬁo)) go)ﬁo)'

Clearly FC ia defined on [0,1]. A Taylor series of FC about
00 under Hg yvields

c 2

- 9 -1, . -1/
F(x) = x+(9n—90)V90G(G (X,B,ﬂo),ﬁo,ﬁ0)+0p(n ) .

Similarly, under Aﬁ this estimated p.i.t. yields

Fﬁ(x):G(G‘l(x; ﬁn,ﬂo); 90, ﬂn) and a Taylor series about 00

and f, vields Fo(x) = x + L(x,fn /% + ‘g'n“eo’vooG(G_l(x‘
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-1/2 -
8,85)5 858140, (n /%), where Lix; by) = 7-V506(G Lix;
0O,ﬁ0); 90,5). Since &n is an ' n ~consistent estimate Fo(x)
- =1/2 c - . -1/4 -1/2
= x + op(n y and Fn(x) = x + L{x; 90)n + Op(n Yo

Therefore Fﬁ(k) is a Op(n~1/2) perturbation of Fn(x) in
a d

(1.5). If 3= Lix; 8 = L(x; 6p), g2 Fo(x) = £9(x), and

3% Fﬁ(x) = fﬁ(x), then fc(x) is as in (1.1) aside from the

op(n‘l/z) term and £5(x) is an in (1.5) aside from op(n”l/z)

term. Since the alternatives of concern are only a distance

-i/4 away from the null hypothesis, the

14 £ (x)-

proportional to n

12y term venishes as n + . Note that 1lim n

O (n
p n - o

£(x)) = 0 and lim n1/4(fn(x)-f§(x)) = 0 for all x € [0,11.
n - o

To carry out the test of Hg versus Ag one needs to

partition the interval [0,1] into N disjoint cells. The
analysis in the preceding paragraph indicates that these
cells will be asymptotically equally probeble under Hg.

Therefore, the counting statistic, ch(u, v; Bn) (defined in

similar fashion as Scﬁ(u,v) in (1.4)), for the composite
hypothesis will be asymptotically equal to ch(u,v). To
compute the centering mean, ﬁN(SC; 0n), one would follow

stepe similar to those in (3.6) - (3.11). However, one can

see that the extra Op(nal/z) term in the composite hypothesis

problem would be one of the terms ignored as in (3.10).
Hence |pN(SC; 8n) - #(8C) | L. 0asn -+ Therefore, the

asymptotic distribution of the test statistic for the
composite hypothesis is the same as the test statistic for
the simple hypothesis,



Downloaded by [University of Nevada Las Vegas] at 13:19 21 April 2015

1544 WELLS, JAMMALAMADAKA, AND TIWARI

Although it seems unlikely that the two test statistics
have the same asymptotic behavior there is a simple intuitive
explanation for this phenomenon. Recall that the type of
alternatives under consideration are at a distance of nnl/4
away from the null hypothesis. Also the estimates used are
J_H_—co?zistent estimates, hence at a distance proportional
-1

to n away from the true value. Therefore, the test
statistic can not distinguish between the estimate and the
true value of the nuisance parameter. If the test statistics
under consideration could discriminate alternatives at a
distance of n—l/zs which the test statistics discussed here

can not, then one would find that the parameter estimation

truly matters. For instance, the KXolmogorov-Smirnov and
Cramer-von Miges test statistics can discriminate
~-1/2

alternatives that are at a distance proportional to n
away. For these two cases it is well known that the
asymptotic distribution theory for the composite hypothesis
and the gimple hypothesis are quite different.

Similar results have been found for statistics that are
functions of the sample spacings. If one uses a statistic
based on "symmetric" functions of spacings, the test
procedure can only distinguish alternatives at a distance of
n—l/4 away from the null hypothesis. However, if one uses
"nonsymmetric" functions of spacings, then the test procedure
can distinguish alternatives at a distance of n~1/2 away from
the null hypothesis. In Wells(1887) it is shown that the
asymptotic behavior for the composite and simple hypotheses
of "symmetric" functions of spacings are the same. However,
the asymptotic behavior for the "nonsymmetric" functions is
quite different when testing the composite hypothesis as
compared to the simple hypothesis.

In summary, to test Hg versus Aﬁ one has to estimate the

unknown parameter by a J n ~consistent estimate and use it in
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a p.i.t., to transform the data with values in [0,1], and then
proceed as if one is testing a simple hypothesis. One may,
therefore, tabulate asymptotic critical values using Theorem
3.3. Once again, as in the case of the simple null
hypothesis, the proposed tests will not be as powerful as the
ones based on the empirical distribution function for testing

the composite null hypothesis.
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